
Anyhedge Numerical Error Analysis

Karol Trzeszczkowski

May 26, 2020

AnyHedge applies integer mathematics to resolve a contract. The goal of this paper is to locate
sources of error, calculate upper limits for the error and prescribe safe ranges of contract parameters.

1 Introduction

1.1 Intent

AnyHedge contract is a futures contract with two positions, hedge and short, as described in the
whitepaper [1]. For complete context, it is important to note that this paper follows the calculation
steps in the document ”Detailed execution of AnyHedge on Bitcoin Cash” and not the abstract
steps in the whitepaper ”High level execution of AnyHedge”. From the perspective of the user the
contract is described by three intent parameters introduced in part A) of the detailed execution.:

• hedge value (denoted h),

• start price units per bch (p1),

• largest allowed price drop (L), L ∈ [0%, 100%).

We will use these parameters as the starting point for numerical analysis of the contract. Two
relevant parameters are obtained from the intent: total satoshis in that we will denote as T and
hedge value X sats per bch, later denoted as Hs which is a value of h [units]× 108 sats

B
.

The following assumptions have been made:

• positive numbers,

• arbitrary precision,

• T < Hs .

• 0 <= n hightrunc bytes− n lowtrunc bytes) <= 3

1.2 Error sources

There are three sources of error - calculating contract values from the intent parameters, mathe-
matical operations in the contract and divisibility limit of Bitcoin.

BCH VMB (Bitcoin Cash Virtual Machine Bytecode, aka Bitcoin Script) can do numerical
operation on 4 byte long numbers while the transaction values can be up to 8 byte long. BCH
VMB also lacks operation of multiplication which requires replacing it with division operation
instead. Because of this AnyHedge contract using oracle values necessarily deals with numbers
larger than the 4 byte limit for numerical operations.

To avoid precision loss a special procedure of division and truncation is employed. The pa-
rameters derived from section 1.1 are truncated to two different levels of truncation and only then
mathematical operations are performed on them.

This initial truncation of the parameters is a primary source of the error. This error propagates
through all operations to the final result of the contract.

The mathematical operations performed by the contract are designed to minimize the informa-
tion loss along the way. Nevertheless because there is a limit on the integer size, some information
is lost in the process for values exceeding it.

1



Finally, Bitcoin Cash is divisible up to 108 satoshi units. Limited divisibility is only a problem
when the total number of satoshis in the contract approaches one. This type of error source will be
taken into account by describing errors in relation to the total amount in contract.

The goal of this paper is to estimate those errors and narrow safe ranges of parameters.

2 Notation

Different truncation levels will be denoted with the upper index T for high truncation and up-
per index t for low truncation, for example HT

s means a hedge value X sats per bch at a high
truncation. Hs is related to HT

s from 18.B) by multiplication 28 n hightrunc bytes. T is related to T t

from 18.B) by multiplication 28 n lowtrunc bytes. hedge value will be denoted with h and short sats

with S. Price in [units]
B

at the beginning of the contract will be denoted as p1 and at the end as p2.
Other symbols will be defined over the course of the paper.

3 Error analysis

3.1 Initial truncation

In the section 18.B) of AnyHedge whitepaper two truncated values are calculated based on the
intent: HT

s which represents the amount that when divided by the current price of BCH in terms of
desired units gives the amount of satoshis that will be paid to the person hedging in the contract,
and T t that represents the total amount of satoshis on the contract. If any of them exceeds the
limit dictated by BCH VMB they are truncated. It is assumed that Hs is always larger than T
therefore the number of truncated bytes from T t is equal or lower than the number of truncated
bytes from HT

s . They can both have from 0 to 4 bytes of truncation, but the difference between
them cannot be equal to 4 bytes, or the contract will fail.
In this step the truncation rejects some number of bits. The error introduced this way is smaller
than the worst case - if all the bits rejected by the truncation are set to 1. To limit the error from
above we put:

∆τ =

n∑
i=0

2isats (1)

where n is the number of bits truncated and n ∈ {, 8, 16, 24, 32}. By the symbol of ∆ we will denote
absolute worst case error. Subscript τ marks that it comes from truncation.

3.2 Mathematical Operations

Procedure

Mathematical operations executed in the contract, as described in section 18.D-1) of AnyHedge
whitepaper, are the following:

1.
HT

s

p2
= HT

D,

2. HT
s mod p2 = HT

mod,

3. 28 n deltaHT
D = Ht

1,

4. 28 n deltaHT
mod = Ht

mod,

5.
Ht

mod

p2
= Ht

2,

6. Ht
1 +Ht

2 = Ht,

7. T t −Ht = St,

8. H = 28 n hightrunc bytesHt,

9. S = 28 n hightrunc bytesSt.

H is the value of hedge position payout in sats and S is the value of short position payout in sats.

2



Hedge

Division that happens during the resolution of the contract is executed in two steps corresponding
to two levels of truncation. At a higher level the first division is done.

HT
s

p2
= HTD

and the remainder is preserved as:
HT
s mod p2 = HT

mod

at this point no information is lost because we can reverse this operation.

HT
D × p2 +HT

mod = HT
s

In the next step both values are untruncated to the level of lowtrunc by the difference between
the two initial truncation levels, what is equivalent to multiplying both values by 28 ndelta . At this
level operations involving T t can be performed. Now the remnder after the division is divided by
the p2. This is the point when information is lost. As before we have an equation:

Ht
2 × p2 +Ht

2mod = Ht
mod ⇒ Ht

2 =
Ht
mod

p2
− Ht

2mod

p2

Ht
2mod is not recovered by the contract. It is lost. The relation Ht

2mod ≤ p2 − 1 is preserved by
the definition of modulo, so the value of H2mod

p2
< 1 and this is the part that is being lost from the

result. The error at this truncation level is less than 1. Our goal is to limit the contract error from
above so we will assume that it is equal to 1. This is an overestimation, but we aim to restrict the
error from above. After untruncating the lower level we get the final result

∆M = 28 n lowtrunc bytessats (2)

∆M is the absolute error originating from the mathematical operations in the contract. Similarly
the error is being made on the short payout.

Short

Short position is calculated by subtracting the H from T . The errors originating from those two
must be added. It will be shown in section 4.2. The absolute error affecting S is the sum of ∆τ H

and ∆τ T where ∆τ denote the errors originating from truncation of respectively H and T .

3.3 Divisibility of Bitcoin

The final error we want to calculate should be relative to the total payout in the unit of satoshi.
Total contract payout is calculated as follows:

T =
108 h

(1− L)p1

where L is the largest allowed price drop and h is hedge value . Later, in section 4.2, we will
use this value to divide the total error. Considering relative error will let us take into account the
finite granularity of bitcoin.

3.4 Upper limit

There is an upper limit for the parameters, and it is determined by the minimum payout of the
hedge, due to price growth.

Hedge payout is calculated as follows: (
108h

p2

)
.

3



We express it with x how many times price has grown.

x ≡ p2
p1
,

Hedge payout depending on how many times the price went up reads:(
108h

x p1

)
.

Putting a restriction on this number will give us a safe range for how many times the price can
grow, without causing additional errors.

4 Propagating and Adding Errors

4.1 Error propagation

The values used to calculate contract hedge and short positions are already affected by errors, there
is the need to propagate this error to the result. It will be done by the standard formula of error
propagation in products and quotients. To derive this formula, let us consider function of parameter
with a small error. From Taylor expansion of this function we approximate:

f(y ±∆y) ≈ f(y)± f ′(y)∆y.

The error propagated over the function reads:

∆f = f ′(y)∆y.

In our case f(y) = y
p2

so

∆f = f ′(y)∆y =
1

p2
∆y

f ≡ H =
HT
s

p2
,

therefore we propagate the error as follows:

∆H =
∆HT

s

p2
.

The p2 parameter should be replaced by the worst case scenario - largest allowed price drop.

4.2 Adding errors

Since we consider worse case scenario, not a statistical error, we shall add error terms with a regular
addition, not using a square summation, as we would do with statistical error. We will also divide
the sum of absolute errors by the total number of units in the contracts, as mentioned earlier.

δy =

∑
{i} ∆i

T
.

4.3 Result

As a result we achieve two formulas: for relative error of hedge and for relative error of short
positions.

δH =
∆M + ∆τ H

T
,

δS =
∆M + ∆τ H + ∆τ T

T
.

δS is strictly larger than δH . To restrain the error from above we chose the larger of two values: δS .

4



5 Intent parameters restrictions

We can now plot the safe ranges for parameters under the condition, that the error shall be smaller
than arbitrary fraction.

5.1 Expression for errors

The final expression describing errors is:

δS =
∆M + ∆τ H + ∆τ T

T
.

Based on this equation we will appoint restrictions required to keep the error below a certain level.

5.2 Safe regimes of intent parameters

The safe region is appointed by the relation δS < 0.15%. This means that the difference between
the actual and the naive expected satoshis output for short will be less than 0.15%. Because δS is
strictly larger than δH , we can also say that the error for hedge will be less than this value.It is
plotted on the figure 1 in terms of 3 parameters of the intent.

Figure 1: A region of parameters restricting the contract outcome error below 0.15%.

As the largest allowed price drop goes up the safe regime is growing. The worst case scenario is
largest allowed price drop = 0. This case is shown on the figure 2 for two dimensions of remaining
intent parameters.

Example

To determine a safe range of p1 based on the figure 2 for the hedge of 200 units, we have to read
the shaded range, which is (0− 1.6× 107)units

B
.

5



0 2×10
6

4×10
6

6×10
6

8×10
6

1×10
7

0

20

40

60

80

100

120

140

p1(start price)

h
(h
e
d
g
e
v
a
l
u
e
)

Figure 2: Shaded region with short error below 0.15% of the contract

5.3 Upper limit

For the upper restriction for price growth we have to agree on what is the minimum outcome in
terms of satoshis that we are willing to approve. If the price of an asset grows to be big enough,
the output could be too small. We chose to have an outcome not smaller than α = 10 sats.

The formula for the upper limit is as follows:(
108h

p1

)
< αx

the valid maximum price growth range is shown on the Figure 3.

Example

For the hedge of 50 units and p1 of 5×106 units
B

the price can grow up to 100 times before the hedge
payout will go below 10 sats.

5.4 Intent restriction

As mentioned in section 1.1, parameters should follow the assumption we made, namely:

T < Hs.

6 Comparison with experiment

To evaluate prediction of this model, it was compared with a simulated outcome of the contract.
The result reflect the upper boundary of the error distribution. It was shown on the figure 4 The
model overestimates the error about two times due to overestimation as described in 3.2 and 4.3.

References

[1] AnyHedge: A Decentralized Hedge Solution against Arbitrary Assets on Bitcoin Cash, imag-
inary username (im uname#102) John Nieri (emergent reasons#100) Jonathan Silverblood
(Jonathan#100).

6



Figure 3: The shaded region indicates safe parameters regarding the upper price limit.

Figure 4: Comparison of of theoretical prediction to simulated contract data. Points represent
simulated contract error and the plane is the theoretical prediction of the upper limit for error.

7


